

Method Selection
and Planning

Team 15

Joe Wrieden

Benji Garment

Marcin Mleczko

Kingsley Edore

Abir Rizwanullah

Sal Ahmed

Method Selection and Planning

Software Engineering Methods
Scrum is our team’s software development method of choice, as this agile methodology is
suitable for small teams, and shall allow us to deal with changing requirements in the future,
especially in relatively short time constraints. Along with this, it is in our best interests to
reconvene in a weekly Scrum meeting, in which we reflect on our progress throughout the
week, checking that every requirement in our previous stage maps onto at least one
requirement in our current stage, and address issues which may have been initially
overlooked before greater complications can arise, as well as have frequent team
walkthroughs of our artefact throughout its incremental development stages - from the initial
requirements to the solution we will pose.

● Other agile frameworks such as XP were considered, but Scrum was chosen due to
it being up to the team to prioritise work according to that which they know is needed,
as well as having less of a focus on strictly following particular engineering methods
(e.g paired programming) that XP advocates.

● Development is carried out in weekly sprints, culminating in the artefact’s current
iteration for the week being provided as a deliverable to the client so they may be
included in the development process should they wish to have access and provide
feedback at any point.

● Focusing on the principles of Scrum rather than the practices (e.g. daily Scrum
standups, which we are unable to do due to workloads from other modules; user
stories are not a viable option as we knew the system requirements from the onset),
allows us to be flexible with how much each person can contribute at a time
depending on their circumstances, but also ensuring equal overall contribution
through the project schedule, which means our bus factor remains high (more on this
later in “Team Organisation”).

Development and Collaboration Tools
The Java framework we decided on is libGDX.

● We had considered using LWJGL, a Java library that provides access to native APIs
for graphics and audio. However, libGDX uses this library in its framework, and since
code reuse is an essential part of Software Engineering, we decided we would use
the higher level methods that libGDX provides.

● This also allows us to focus our time during each Scrum sprint on solving issues that
relate to the task given to us by the client, rather than spending the time to learn to
use LWJGL as it provides low-level access.

● On that note, libGDX is quite seamless in that the majority of the program consists of
regular Java, which our team is familiar with. The high-level libGDX methods may
simply serve to render graphics to the screen, for example.

Our IDE of choice is IntelliJ.

● IntelliJ IDEA is the recommended IDE by the libGDX team, and so it has the most
support for the framework.

● We had considered Visual Studio Code as an alternative, however, we had
difficulties with VS Code during our findings, specifically with using the installer from
libGDX, which creates projects using gradle.

● IntelliJ on the other hand does not have this issue, and thus in learning how to use
libGDX, IntelliJ is often referenced, making it the ideal choice.

● Furthermore, IntelliJ lends itself to a project-style of development. It has features that
aren’t present in VS Code that make it easier to work on large scale projects with
multiple classes such as automatic class refactoring.

For version control, we are using Git with our repository stored on GitHub.

● This allows us to avoid collisions and other inconsistencies when merging different
members’ works together.

● It allows members the ability to access the code after each sprint to understand how
it works in order to reduce the effects of the bus factor, especially since members are
working remotely.

● Furthermore, hosting the repository on GitHub allows us to easily maintain version
control history and even gives us access to GitHub Pages which allows for easy
access to documentation.

● Finally, Git has native integration in IntelliJ thus making it easier to pull and push
changes.

For online meetings, we use Zoom.

● A weekly scheduled Zoom Scrum meeting allows us to communicate via voice and
text chat as well as sharing our screens for input from other members for any
problems encountered.

● Zoom also gives us a platform to engage in Team-Customer meetings should we
have any questions or queries for the client or vice versa.

For further collaboration, we use Discord.

● Separate text channels allow for easy communication on the relevant issues in each
channel, along with support for uploading various file types.

● Voice channels allow us to communicate with each other in a less structured way
when we need to collaborate before the Scrum meeting.

Finally, for the storage and collaboration of documents, we use Google Drive, making it easy
for several members to update the same document and edit in real time through the version
control functionality.

Team Organisation

Our tasks, as described below, have initially been distributed in a way that allows two of our
members, Joe and Benji, to focus on learning the technical aspects of the development and
programming, while the other four members take on refining the artefact’s successive design
versions and its documentation. This meant that while the programming team familiarise
themselves with libGDX, the other members are to define the software architecture from the
requirements which had been elicited, carry out planning, as well as identify risks and their
respective mitigations.

The reason we feel it is appropriate to split the team into two groups is so that people can
work with their strengths and productivity can be boosted. The documentation is worth three
times more than the code, which is why we have decided to put more people on writing
documentation. We decided against putting 5 people on documentation as this would greatly
decrease the bus factor, since there would be only one focusing on code.

Following their findings, the programming team is to inform the rest of the group on how to
lay out the concrete architecture, such as detailing technology-specific methods. They will
then continue to implement the product while the rest of the team write-up the other tasks as
laid out below.

The documentation team has decided to pick up a section a week rather than designate one
section to one team member. There are a few reasons for this: first of all, we manage to get
four times the amount of ideas on each section, secondly, the layout/style of each document
is going to be the same. Thirdly, having four people working on a section each week
increases the bus factor. And lastly, people can combine their written-communication and
technical abilities.

Project Breakdown

The website is to be the face of our
project, an area for which all of the
documentation and updates about the
project can be viewed by the client.

Requirements are elicited from a
Team-Customer meeting, then each
User, Functional and Non-Functional
Requirement is defined.

The Abstract Architecture is created as a
diagram allowing the team and the client
to understand how the implementation is
laid out, with a Concrete representation
to be made from it.

Software Engineering methods are
selected and the project is planned using
a Gantt chart.

Risks are identified, represented, and
evaluated based on their likelihood of
occurrence and their impact should they
occur. Methods to mitigate these risks
are also discussed.

The product is implemented using Java
and libGDX, completed with
documentation. Any requirements that
will not be implemented should be
discussed and justified.

Project Plan

The plan above describes each individual task that must be completed and in what order.
High priority​ tasks are coloured in ​blue​:

● Requirements elicitation dictates what features we must implement and thus what
our Architecture and Method Selection will be.

● Abstract Architecture is a high priority as without it, the implementation can’t begin.

● Implementation has the longest time as it involves making the product the client has
asked for.

Tasks that are ​dependent​ on others are denoted by a leading red arrow:

● Defining each kind of requirement cannot be completed without first eliciting the
requirements with the client in a Team-Customer meeting. There may be several of
these over the course of the project but this initial elicitation is vital.

● Describing specific use cases for the product depends on knowing what the product
should do, as denoted by the requirements.

● The Implementation and the Concrete Architecture can be completed simultaneously
as the implementation of the product will help define what the architecture looks like
and vice versa. However, neither can be completed without first outlining an Abstract
Architecture to give a plan for which entities should be programmed.

● Discussing the unimplemented requirements can be started during Implementation
as the development team should have a good understanding of how much they can
get done.

The ​critical path ​consists of [each of the User, Functional and Non-Functional]
Requirements → Abstract Architecture → Method Selection → Implementation. The plan
above assumes that each task takes the longest possible amount of time to allow room for
any risks that may arise. Changes to how long each task takes and when they begin/end is
discussed on the website.

